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On the Gibbsian Nature of the Random Field Kac
Model under Block-Averaging'
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We consider the Kac—Ising model in an arbitrary configuration of local magne-
tic fields # = (#,);. 2% in any dimension d, at any inverse temperature. We inves-
tigate the Gibbs properties of the ‘renormalized’ infinite volume measures
obtained by block averaging any of the Gibbs-measures corresponding to fixed
n, with block-length small enough compared to the range of the Kac-interaction.
We show that these measures are Gibbs measures for the same renormalized
interaction potential. This potential depends locally on the field configuration #
and decays exponentially, uniformly in #, for which we give explicit bounds. The
construction of the potential is based on a high temperature-type cluster expan-
sion.

KEY WORDS: Kac-model; random field model; Gibbs-measures; renormaliza-
tion group transformations

I. INTRODUCTION

The study of models with Kac-type ( =long range) potentials is a rich and
fruitful subject in equilibrium statistical mechanics. Kac-models depend on
a parameter y describing the inverse range of the interaction. They were
introduced by Kac [1963] to give a microscopic model in which the van
der Waals theory of phase transitions could be understood. In fact, the
famous Lebowitz—Penrose theorem [ LP] states that, for a classical particle
system with a Kac-pair-interaction, the free energy density converges, in
the limit y | 0, to the convex envelope of the mean field free energy.

In recent years there has been new interest in the study of Kac lattice-
spin models (see e.g. [COP], [BBP], [CP], [BZ1], [BP]). The challenge

!'Work supported by the DFG Schwerpunkt ‘Wechselwirkende stochastische Systeme hoher
Komplexitat’.
2WIAS, Mohrenstrasse 39, D-10117 Berlin, Germany. e-mail: kuelske@wias-berlin.de

991

0022-4715/01/0900-0991$19.50/0 © 2001 Plenum Publishing Corporation



992 Kilske

in this direction of research is to understand these models on the level of
Gibbs-measures, and not only on the level of thermodynamic potentials,
for small but finite Kac-parameter y. Even the proof of low-temperature
ordering in the Kac-Ising model in more than one dimensions in zero field,
at temperatures uniform as y | 0, was only given relatively recently (inde-
pendently by [CP], [BZ1]). Steps in the direction of a treatment of not
necessarily symmetric long-range models are under way ([BZ3]). New
behavior appears when Kac-versions of models with disorder are inves-
tigated. So far, for random models there are rigorous results about the
structure of the low-temperature Gibbs measures only in one dimension.
However, even here adding randomness can influence the behavior of the
system in an interesting way (see [ BGPi] for the Hopfield-Kac model, see
[COPi] for the random field Kac-model).

It is a common step in the analysis of lattice Kac-models to try to
describe the system on the level of local averages of the order parameter in
blocks of a scale / < % An analogous coarse-graining from a continuous-
particle system with Kac-potential to a lattice-spin system was used in the
beautiful paper [LMP] to show the existence of a gas-liquid phase transi-
tion (with the distinct phases characterized by different densities).

Such a blocking transformation can be viewed as a ‘renormalization
group transformation’ and be immediately investigated on the infinite
lattice, too. Already from an abstract point of view, it is then a natural
question to ask whether the resulting image measures will be Gibbsian,
having in mind the numerous examples of non-Gibbsian measures emerg-
ing in seemingly innocent places in lattice spin models. In particular we
remind the reader that, in short range models, one of the most prominent
examples of non-Gibbsian measures is the Ising model in zero field under
block averaging, at low temperature. (This was proved by [EFS] in their
‘big paper’, see Theorem 4.6 therein.) For a general overview on the
problem of non-Gibbsian measures we also refer to the standard reference
[EFS]. For more recent developments, see the review articles [E], [F] and
[DS], [BKL], [MRSM]. In the case of random system, the additional
question comes up to understand the interplay with the disorder variables,
and see whether the resulting interactions, when they exist, are local func-
tions of these variables, too. (For an analysis of a class of different
examples of non-Gibbsian, but weakly Gibbsian measures arising from
disordered systems, see [K5], [K6], [EMK].)

After the blocking is done, the situation should be easier, but it can
still be highly nontrivial to control the phase structure of the blocked
measure. We will not discuss this step here, but we warn the reader that a
lot more work is to be expected for this. It should however be clear that it
can be very useful from a technical point of view to have at hand a renor-
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malized Hamiltonian with precise estimates on the decay of the potential to
begin with. So, the purpose of this note is both of more abstract and of
more concrete nature: (1) we like to present a nicely behaved coarse-grain-
ing example of a disordered system for Gibbs-theory, and (2) we provide
concrete information on the given model that can be explicitly used in a
later analysis. In fact, we hope to be able to prove in a later paper the exis-
tence of ferromagnetic Gibbs measures in three or more dimensions at low
temperatures in the random field Kac model by combining the present
method with the additional coarse-graining method from [K3]. It was used
therein to show ferrogmagnetic order in a nearest neighbor continuous spin
random field model. In particular a large space scale coarse-graining
(renormalization group) will be needed that was invented by [ BK] for the
random field Ising model.

The technicalities of the present paper are relatively simple, so our
treatment of the model can also serve as a pedagogical and self-contained
example that shows what ingredients are needed to prove such a result.

Let us now define the model and state our results. Consider the
Kac-Ising model in an arbitrary external magnetic field configuration
7= (1,); < z%- The formal Hamiltonian is

Hn)0) = 55 1=y oo, BT ne, 1.0

The spin variables o = (0,);.,# take values in {—1, I}Zd. We consider this
formal Hamiltonian for a fixed value of the inverse temperature f and the
Kac-interaction-parameter 0 <y <1 describing the inverse range of the
interaction. The two-spin interaction is given by J,(i) = y“Jy(yi) where we
restrict ourselves to the simplest choice for the Kac-interaction being an
indicator function J(i) = ¢,1)y<,, where [i| denotes the sup-norm on R’
¢;=2""is the normalization that is chosen such that | J(x) dx =1 for all
y, so that the strength of the interaction of a fixed spin with the others is of
the order f, independently of y. This is only for simplicity, and we can treat
any other non-negative function with compact support (see the remark at
the end of the paper preceding the appendix.)

The aim of the paper is to study the ‘renormalization group map’
given by /-block-averaging which is defined as follows. Partition the lattice
7“ into blocks of sidelength /. Each of these blocks will be labelled by an
index x, where we identify x with a coordinate vector in Z“. Then the block-
average map is just

1
(ai)iex g mx((o-i)iex) = l_d Z g; (12)

iex
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from {-1, 1}’d ->{-1, -1 +l%, ..., 1}. Following common notation, the
last sum is over those sites i in the original lattice that lie inside a block
with label x on the coarse-grained lattice. We also write o, = (0;);., (and
7. = (11); ) to denote the collection of Ising spins (resp. external fields) in
the block x. Let us denote by the symbol 7; the corresponding map on the
infinite volume configuration spaces, obtained by application of (1.2)
independently over the blocks.

As usual in Kac-models, it is then straightforward to extract a main
part for the corresponding hypothetical coarse-grained energy function
(say, in finite volume). What is less clear is the behavior of the error terms
(the ‘blocking error’) and whether they give rise to a nicely absolutely con-
vergent potential. In this context we have the following explicit result.

Theorem 1. Assume that # e RZ is an arbitrary external field con-
figuration and u[#] is any of the infinite volume Gibbs-measures for the
corresponding d-dimensional Kac-Hamiltonian (1.1). Suppose that the
block length /€ {2, 3,4, ...} is less or equal than the range of the interac-
tion % and, moreover, that the parameters /, , y are such that the ‘expan-
sion parameter’

ipr0i=3 (ew(p T Wa-p-sl)-1)

xeZ
iex, jel

is less or equal than A* ~ 0.110909....

Then, the /-coarse-grained measure 7,u[#] is a Gibbs-measure for an
Hamiltonian with exponentially decaying interactions.

This Hamiltonian has the form

H™[n]((m)xc2)

< Y Ju(x=y)m.—m)*+ ¥ fﬁl[nx](mx)> ZZdUA(”A’mA)

xyeZ xez? tAc
1.4)

Here p'= Bl is the renormalized inverse temperature. The single site
potentials are given by the ‘finite block free-energies’

2

Sealn1(m,) = log 1°[1,1(m,(0,) = mx)—m—(1+€yz) (1.5)

ﬁld
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where 4°[7,](0, = ®,) =TT, 52422 is the product measure obtained by
putting the Kac-coupling J equal to zero, and 1+€, =73, J,(z) is close
to one for y/ small.

The multi-body potentials U, stem from the expansion of the ‘blocking
error’. They are non-zero only for |4| = 2 and satisfy the bound

I* |4]—1
U _ <a*~0.633 1.6
T 1Unem) ( - ,)> a (L.6)

independently of x and of the external fields #.

Remark. Note that we did not make any assumption on the random
field configuration. (In fact, we only use the word ‘random’ in ‘random
field Ising model’ so that the model may be recognized by a general
audience.) Of course, in the ‘true’ random field model, one is interested in
the behavior of the system for typical configurations # that are drawn from
an ii.d. distribution on the infinite lattice. (See [BK], [AW] for mathe-
matical results on the random field Ising model, see [ K3] for the continu-
ous spin version.) The Gibbs measures of untypical configurations can of
course have very different properties. Even though, our theorem states that
the map from Hamiltonian to renormalized Hamiltonian stays simple. As
long as there is smallness of the parameter A(/, §, y) it is irrelevant whether
the original system undergoes a phase transition or not.

Remark. The condition on the parameters essentially means that
L'yl has to be small enough, see (2.28).

Remark. The first two terms in the formula are what one expects to
describe the leading order behavior of the Kac-model. The first term favors
configurations of constant block-magnetisations m,, with the scaled range
of interaction y/. The single site potentials given by f; ,[#,](m,) favor con-
figurations close to its minima, which are determined by #,, the value of the
external fields on the block. For vanishing external fields, the potential
converges with / 1 oo to the free-energy function of the Curie—Weiss model
whose minima are the (one or two) possible values of the magnetization.
More generally, for an i.i.d. random # the functions f ,[#,](m,) converge
a.s. to the non-random free-energy function of the Curie Weiss random
field model. About this simple model very explicit information is known,
see e.g. [AP], [APZ], [K1], [K2].

So we see that we are here in a particularly nice situation where the
renormalized Hamiltonian is given by a main part obtained by a straight-
forward computation and corrections that are quickly decaying and expli-
citly controlled. Let us just mention some results of an analogous character
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in different lattice models. [BCO] were able to treat the entire high-tem-
perature phase of the /-blocked Ising model with Gaussian scaling by
elaborate expansions and provided explicit control on the non-Gaussian
terms of the resulting potential when /1 oco. In [K3], [K4] single-site
coarse-grainings from random continuous spin-systems to discrete ones
(that turned out to be Gibbsian) were used to analyse the phase-structure.
It might seem somewhat surprising that the construction of the full renor-
malized potential for a lattice Kac system was not formally investigated
before; but say in [BZ1] the problem was bypassed by different methods
and controlling the ‘blocking-error’ by uniform bounds.

The proof of the theorem, given in the next chapter, relies on a suit-
able polymer expansion of the ‘blocking error’. We do the coarse graining
of the original model in finite volume for any given fixed Ising-boundary
condition. We show convergence of the expanded blocking terms, uni-
formly in the volume, the boundary condition, and the configuration of the
external fields (see Proposition 2.1). For this we employ a general explicit
convergence criterion for long-range graphs on the lattice, given in the
appendix, which is responsible for the numerical constants occuring in the
Theorem. Uniformity in the volume, for all boundary conditions, then
implies the infinite volume result for all Gibbs measures, with the same
bounds, by the general Proposition 2.2.

Il. PROOF OF THE THEOREM: EXPANSION OF THE BLOCKING-
ERROR

The proof of the theorem relies on the following finite volume result.

Denote the finite volume Gibbs measures of the Kac-model (=
original system) with boundary condition & and field configuration # in the
volume A = Z¢ by

_ —H[n41(041 529\ 2)
= d Za f(aAaZd\A) e ™
wE M) == S ¢ Al @1
A

where f is any spin observable and H,[#,](c | 44 4) is the restriction of
the infinite volume Hamiltonian (1.1) to 4. As usual, it is obtained by
keeping only pairs {7, j} in the first sum and i in the second sum that are
not contained in the complement of 4, and substituting &, for sites i outside
A.

Proposition 2.1. Assume that [/, f,y are as in the hypothesis
of Theorem 1, that is [<j, [e€{2,3,4,..} and A(B,y,])=
erzd (eﬂZx:j:iex,jeoIJy(i—j)—Jy(IX)I_ 1) < A1*~0.110909....
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Let V < Z“ denote a finite volume in the coarse-grained lattice and
A= {ieZ%x(i) e V'} be the corresponding set of sites in the original lattice.

Then, the corresponding finite volume coarse-grained measure with
boundary condition ¢, 4 has the representation

exp (— Hy\* ™ [,](my))

KA (my(a,) = my) = P = 2.2
e I T S T TA D)
Here the ‘finite-volume renormalized Hamiltonian’ is given by
H ™11 ](my)
=# (4 T xmpommmy+ 3 £
x,yeV xez’
- Y U, my) (2.3)

A:AcV

with renormalized inverse temperature B’ = fI¢ and ‘finite block free-
energies’ incorporating the finite volume corrections given by

fUZd\A[”x] (mx) - _W log 25% UZd\A[”x] (mx(ax) = mx) 5 ZV l(x_ y)

2.4)

where

W] (0= 0 =[] SR PUA L0 a WUZDTV @)y )

iex 2 cosh (ﬁ(”i+2jeld\A Jy(i_j) 5]'))
is the product measure obtained by putting the Kac-coupling J equal to
zero inside A4, but keeping the couplings to the boundary.

The multi-body potentials U%"\1 are non-zero only for |A4| > 2. They

are independent on the boundary condition G4, 4 for d(4, V°) >% and we
have the bound

A:A>3x j'(ﬂ9 Vs I)

uniformly in x, the boundary condition &+ , and in the external fields #.

_ 2F 0 \M-1
Y, UM, my)| <—> <a*~0.633 2.6)

Remark. Apart from boundary-corrections the finite-volume coarse-
grained Hamiltonian is of the desired form given in Theorem 1. Note that
the interaction term is only between m,’s for sites that lie in the volume V.
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The main influence of the Ising-boundary condition is in the f-terms acting
as local potentials on the coarse-grained variables. E.g., for mainly plus
boundary Ising spins this potential will favor positive values of m,, for x
close to the boundary.

Proof. 1t is convenient to collect the linear parts of the RF-
Kac-Hamiltonian including the boundary terms and define measures that
just contain these parts. This is the reason for defining the measures (2.5).
We denote more generally by u%°\1[y,](¢,=w,) the corresponding
product measure on the Ising configurations in the whole of 4. Then we
can rewrite the expectation of any observable f w.r.t. the finite volume
Gibbs-measures in the volume 4 with boundary condition ¢, 4 in the form

Gz9\4 7. Lxije i—j)aoioj

2\ 4 _ S 1y "N 41(doy) f(0,G70 ) e2 T4 Do)
wi™Mn () = 0.5, By T(—i)ow:
_‘./‘A’UZ \A[nA](da-A) esz,JsA (i—J) 010}

@2.7)

Here we have achieved that external fields and boundary conditions are
absorbed in our new a-priori measures. We introduce non-normalized #1,-
weights by the constrained expectations

G- G- By . i—7)oio;
Z5 0, )my) = [ 107 00,0(6,) Lo mmneret 0457 (2.8)

so that the desired image measure we would like to control becomes

Zin.d0my)
Zrﬁy ZZZH\A[’/A](’T’V)

Now comes the blocking. To rewrite the non-normalized weights (2.8) use
the constraint to get

2.9)

HEN 1m0 ) = my) =

Zizd\A[nA] (mV) — e%u X, yev Syl(x—y)) mym,,

5 B ij: iy _ s
[ KO0, 1(d0,) T g 5007 S, U=

xed
(2.10)

The trick is to make the last line into an expectation w.r.t. a probability
measure. Write u%%\1[5,1(do,|my) :=[1.cr u>7*"[n,1(do, | m,) where
the last terms denote blockwise independent probability measures on the
original spins conditioned on their magnetization, i.e.

0,G74 jﬂﬂ, EZd\A[”x](dax) 1m (o )=mJ(Gx)
/i 7°\4 n d ; N )= o x\Ox. 211
J e o my) fo) =5 e SRR RSl
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We put

i 1 -
I, )0my) = — g log ™0, J(m(o,) =m) 20 (2.12)

By dropping the superscript we denote the quantity obtained by putting the
boundary condition 7,4, 4 equal to zero. Of course, for sites x sufficiently
far away from the boundary of V, the boundary condition is not felt
anymore, and the two quantities coincide.

This function is the first part of the free-energy-like function (2.4)
occuring as single site-potential. For large / (and vanishing or random ) it
becomes close to a rate function. In this way we can write the constrained
weight (2.8) in the form

G7d\ 4
s

Z7E [ J(my) = € ZxperTuGemyymamy =1 eyt 3m)

— B ..
X '[ ﬂ?{ Uzd\A[nA](dO-A | mV) e2Zxyev Zijiex je ) (Si=)=T((x=))) o0 (2.13)

The negative exponent of the exponential in the first line equals the
renormalized Hamiltonian (2.3) up to the U-terms. To see this, use the
equation 2mm, = — (m,—m,)*+m’+m’, and definition (2.4). The next line
of (2.13) gives corrections. Now, the whole story is that these corrections
can be expressed as a convergent series of interaction potentials for the
block variables. In order to do this we perform a high-temperature-type
expansion and produce a polymer-partition function, with weights depend-
ing locally on the m,’s and #,’s. This is seen as follows:

We define the set of pairs on the coarse-grained lattice between which
an interaction can take place, i.e.

B,,:={{x v, x,yeV:diex, Jjey  J(i—j) #J((x—y))} (2.149)

Note that, for ls%, only interactions between different sites x, y occur.
With this definition we can rewrite the blocking corrections given by the
second line in (2.13) as

f ﬂ?i ‘7Zd\A[’7A](dO-A | mA) l‘[ (eﬂ Zijriexjey (Hi=D=J(x=yN)aij_ | + 1)

{x v} {xr}es,

= Y [ o m)

B:B<%,

X 1‘[ (eﬂzi,j:fex,;ey(Jy(ifj)fly(l(xfy))) o0 __ 1) (2‘15)
{x.y}:{x,»}eB
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For a set of bonds B we denote the corresponding vertex set by
X(B):={xeV:3yeV,{x, y} € B}. The simple but crucial point is that
the u’-integration factorizes over connected components of the graph
(X(B), B). This allows to do an expansion in the usual way. The interesting
points being left are to get reasonable bounds to prove convergence and to
keep track of the dependence on external fields and boundary condition.

More precisely, we write B= P, U --- U P, for the unique decomposi-
tion into connected components and call the P’s polymers. So, a polymer is
a connected subgraph of (X (4, ), %, ;). We write =%, =%, (V) for the
set of all such polymers in V. There is the obvious notion of pairwise com-
patibility: P,, P, are compatible iff X (P,) n X(P,) = &.

So we can continue to write the last expression as a sum over pairwise
compatible families of polymers with m- dependent activities of the form

. s ien sy Ui—D) =T G—))) 010
J 1%y 1(do, | m,) e2Exrer Tijsien e Ili=D=HG=y) o,

= Z l_[ pf’;-zd\A[ﬂX(Pi)a My(py] (2.16)

(Pr, s Py)c i=1
This is the formulation of a polymer partition function, of the form given
in appendix (A.1). Here the polymer activity of a polymer P is given by

p;Zd\A[”X(P)a My p)]
= '[ ﬂ?fazd\A[’?X(P)](dUX(P) | mX(P))

X H (eﬂ i jiiex, jey(i—N—LU(x=y)) oioj _ 1) (2.17)
{0} {x yteP
The activity depends on the coarse-grained field m and external field # only
on the values for x’s in the vertex-set X(P). The dependence on the
boundary condition & is only for X (P) near to the boundary.

We want to perform the corresponding cluster-expansion for the
logarithm of this polymer partition function. This is nothing but the Taylor-
expansion when the polymer-activities are treated as independent (complex)
variables pp. General information on its structure and an explicit conver-
gence criterion is given in Proposition A.1 in the appendix. To control the
expansion we need estimates on the magnitude of the polymer weights. We
employ a uniform bound for the terms under the integral that is valid on
each pair of cubes x, y, uniformly in the spin-configurations. Using
le*—1] < eM—1 we have

Ieﬁ Yijiiex jey (Fi—)—T(I(x=y))) gio; _ 1 |

< ePZijiexjey(=D=JG=_1 =: ¢~ "> (2.18)
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This immediately gives an estimate that doesn’t depend on the integrals any
more, and hence

lp? d“[’?xuo), mypll <e ~Zb:ber T (2.19)

independently of the values of m, #, and 6. In our case where the Kac-
interaction is given in terms of the characteristic function J(|i—j|) =
eyl j<! we have that e = 0" _ 1, independently of b unless it is
Zero. Looklng at the definition of the ‘expansion parameter’ (1.3) the Pro-
position A.1 now ensures convergence of the expansion under the assump-
tion A(B, y, ) < A*.

In our case, the activities are functions of m, #, &, and consequently
the cluster-weights are functions of them, too. Indeed, we can write the
logarithm of (2.16) as a cluster-sum

z ¢%Zd\A(’7X(‘€)a My(g)) (2.20)
%

where the sum is over all indecomposable sets ¥ of polymers. We have
written X (%) = Up. pce X (P). Since the cluster-weights are just sums over
terms in the Taylor-expansion, the local dependence on external field and
boundary condition of the polymer-weights immediately carries over to the
cluster-weights <15;Z"\A(17X(%, My ), as indicated. These facts are collected in
Proposition A.1 in the appendix.

Finally we resum over the clusters with fixed vertex sets X (%) to
obtain the representation for the logarithm of the blocking error of the
desired form

5 s it Gi— D) =T ((— ) o1
log j 1872y 1(do j|my) e2Emrer T, Gi=D =Gy ey

= Y U4 my) (2.21)
A:AcV
where
UiZd\A(”Aa m,) = Z Q%Zd\"(’?x«g)a mX(({)) (2.22)
C:X(@) =4

From the general decay estimate on cluster-sums given in appendix (A.4)
we immediately get the decay-estimate on the potentials of the form

, /1* 14]—1 p ).* d
Y 7 \A(nA,mAn( ) < X |¢”“(’7X<%”"Xm)'< )

A:An{x,y}# & € : € icp{x, y}

<a* (2.23)
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for any polymer {x, y}. This, in particular, implies the desired estimate
(2.6) and thus finishes the proof of proposition 2.1. ||

Remark. The reader might find it instructive to write down the exact
expression of the pair-interactions in the potential U. It is easy to see by
summing the terms in the Taylor-expansion containing just a given polymer-
weight py, ,, that

Gz4
U,y Mys, 1)

= log [ u2*[n,1(da, | m,)

% f 187y, 1(do, | m,) eF Tisiexses Oi=D—IiG=ew; (2 24)

(Here we have used the form py, ,, = j e~ —1 and that the sum of terms
corresponding only to the single bond polymer-weight in the Taylor
expansion of the logarithm of the partition function is log(1+ py, ) =
log|e)

We can get a uniform bound on this pair potential which is better than
what would follow from (2.6) by using the uniform bound B/*c;? on the
modulus of the argument of the exponential under the integral in (2.24). So
we have

|U({7_§,d)\/?(”{x, »}e m{x, y})l < Ca'ﬁ,(yl)d (225)

In particular we get from this and (2.6) for the higher terms that

O R e ) IECED

A:A>x

where
v, :=#{xeZ’: Jiex, je0:J(i—j)#J(x)} (2.27)

is the number of sites that can interact with a given site via pair-
interactions at all. To check the quality of our estimates note that
> er 2asx lU4/IA| is an upper bound on the modulus of the logarithm of
(2.16), the ‘total blocking error in A’. Thus, |[V|/2 times the r.h.s. of (2.26)
is an upper bound on the total blocking error. But, ¢,8'(y))%,,|V|/2 is
precisely the upper bound on would get on the total blocking error by
doing a uniform estimate in the argument of the exponential in the last line
of (2.13) in the whole of A4, without expansion. So, the only difference is in
the higher order terms and we have lost very little by summing back the
expansion.
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It is a simple geometric fact that there is a dimensional dependent
constant ¢ s.t. v, ; < cy(yl) =~ (see e.g. Lemma 2.1 [BZ1]). So we have
that

WP, 7, 1) <o, (" 4" — 1) < e Byl x "' (2.28)

using that e™ —1 < |x| e™. This shows that 'yl has to be small enough for
the expansion to work.

Remark. One may ask what happens in the case / >% where blocks
are larger than the range of the interaction, forgetting about the smallness
of y and the motivation of taking /-averages to analyse the Kac-limit. This
is of a different nature altogether. We remind the reader that, by a result of
van Enter, Fernandez, Sokal, there is provably non-Gibbsianness in the
usual nearest-neighbor Ising model in zero field, for all even /, at suffi-
ciently low temperature (see Theorem 4.6 in the big paper [EFS]). Of
course, at sufficiently high-temperature there will be again Gibbsianness in
the Kac-model: An expansion of the couplings between neighboring blocks
as indicated by the formal equation

eg i, jIi—Poioj+ B Xinoi l_[ egZi,jeny(i—j) 00+ B Zi e x N0

X

x [ (efTexiorhi=Doci_141)  (2.29)

{x.y}hx#y

where only neighboring x, y occur, would provide us with an exponen-
tially decaying #-dependent potential if the ‘expansion parameter’
ezt xpo (eFTiiiexic0 (=D 1) jg smaller than a suitable constant. This is
seen as in the proof of our Theorem. Noting that the number of pairs of
spins at sites in neighboring blocks having non-zero interaction with range
1/y is of the order (/~!/y)?* this immediately implies existence of a con-
vergent interaction potential for BI%(yl)?~? sufficiently small. For better
results, more elaborate expansions would have to be done.

Now, to carry over the results of Proposition 2.1 to the infinite volume
and prove the theorem, we use the following general fact about Gibbs-
measures under block transformations. It says that control of the coarse-
grained measure uniform in the finite volume, gives Gibbsianness with the
same estimates in infinite volume.

Proposition 2.2. Suppose that u77\1( - ) are local specifications, not
necessarily translation invariant, for a lattice spin system with finite local
spin-space. Fix / and suppose that we are given arbitrary local maps
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o, mo,), for all [-blocks x. Assume that we have the finite volume
Gibbs-type representation

G7d\ 4

e —Xdcv q}i (my)

oz%\4 = = _
wi M (my(o 1) = my) T T ) (2.30)
iy
where V' = Z¢ denotes a finite volume in the coarse-grained lattice, and
A={ieZ?|x(i)eV} is the corresponding set of sites in the original
lattice.
Assume that the above ‘finite-volume potential’ @°2"\1 has the follow-

ing properties. )
(i) It is absolutely uniformly summable, for all fixed boundary con-

ditions &, uniformly in the volume 4, i.e. that we have for all x € Z¢

sup Y @7V, <00 (2.31)
4 g:dsx
(i) It converges to an infinite volume potential
lim @7\ =, (2.32)
A17%

for all fixed 4 = Z“ and boundary conditions 7. _ .
Then, for any Gibbs-measure u on the original system, corresponding

to the local specification u%"\4(c,), the renormalized measure Tu is a
Gibbs-measure for the limiting interaction potential @ = (D) , 7.

The proof will be given in a moment. Assuming this result, the proof
of Theorem 1 is immediate: The convergence of the renormalized potentials
(2.32) is readily checked by the explicit expressions (2.4), (2.5), (2.22) with
(2.17). In fact, in our case of a Kac-interaction given by a characteristic
function, the potentials even become A-independent for A large enough.
Uniform absolute summability at every site x is clear by the explicit esti-
mate (2.6).

Let us finally give the

Proof of Proposition 2.2. Choose volumes V; =V, = V,. Assuming
the Gibbs-type form (2.30) we have for the conditional expectations

ﬂiz(ng(aAo) = my, | mVl\VO(O'Al\Ao) = mVl\VO)
ZWW W e*ZAcV2¢i(mV0mV1\V0'71V2\V1)
2V

Z’ﬁ Z’h e —Zacv, ¢1,74('711/0’"1/1\1/0'711/2\1/1)
Vo Vo\Vy

z ¢i(”lV e \V) z . d§6 my mj 77,
e AcV. [ ) e AcVy:AnVy# D A( VoM \V T \V) ANZ
A"V(I)#{Z < AnVi\V1¢g0 o2 > 2\N

T~ T~ ~
> 5 € “Zycy,  Palivgmy\vy) {e “Zev, anvyr g BATVIY VYY)
iy, Anvy: D ANVyNV 25

>Vz\V1
(2.33)
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with the short notation

Zrth\Vl f(ﬁle\Vl) e_Z"CV2\V0¢i(mV1\Vo';‘V2\V1)
S (Mppp ) dvpi 2= (2.34)

S e Zac Vo \V By \v v, \v)
v, \Vy

Now, from the summability hypothesis (2.31) follows that by choosing V;
sufficiently large (but finite), the exponential in the brackets can be made
uniformly arbitrarily close to one and thus we have

Wy (0 4,) = my, | ml_/l\Vo(‘TAl\Ao) =My\p,)
e 721 AT &\t
= 2% - x (1+0(4,)) (2.35)
ZrﬁVO e _zi NP &\t ) ’

uniformly in 4, > A4,.

Let us now assume that, for a given Gibbs-measure y, the boundary
condition & is chosen s.t. lim, u, = u. Taking the limit 4, 1 Z* we recover
the renormalized measure 7y on the Lh.s. (noting that the renormalization
group transformation is local!) and from the convergence of the potential
to the boundary-independent expression we have the estimate

e -2, v, D 4(my gmy \v)
AnVy+ D
(T | M) = o i (lto(d)) (2.36)
e ey, ATy \v )
iy, AnVy£ D

Finally we can put A4, 1 Z¢. The last equation shows the continuity of the
conditional expectations on the r.h.s. and their convergence to the Gibbs-
formula, as desired. ||

We don’t need it in the paper, but let’s make a simple comment on the
translation-invariant case, by which we mean that both the local configu-
ration of the original system and the map 7 are translation-invariant.
Assume that we have the representation (2.30) and conditions (2.31) and
(2.32) only for either 1) periodic boundary conditions or 2) one specific
boundary condition & for which we know that the local specification of the
original system converges to a particular translation-invariant Gibbs-
measure y;. Then it follows already that Tu is Gibbsian for the same limit-
ing potential, for all translation-invariant Gibbs measures u.

E.g. for the case of periodic boundary conditions, this is seen as
follows. Note that by compactness there is always a translation invariant
weak limit point g, of the corresponding finite volume measures. By the
reasoning given in the proof of the proposition, Ty, is Gibbs for the limit-
ing potential. But from this follows that all renormalized translation-
invariant are Gibbs-measures for the same potential. This is a consequence
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of the general dichotomy-theorem for block-transformed translation-
invariant Gibbs-measures, by [ EFS] (see [ EFS] Theorem 3.4), which states
that all renormalized translation invariant Gibbs measures are either Gibbs
for the same potential or not Gibbs at all.

Remark. In response to a question of a referee let us finally point
out that the expansion method is in no way restricted to Kac-potentials
that are given by an indicator function. The only novelty in the general
case is the emergence of additional single-site potentials in the renormalized
Hamiltonian. In fact, let J;(x) be any non-negative function with compact
support. Then the following modified version of Theorem 1 is true:

Suppose that A(B, 7, 1) = Tepo (xp (BXps: W (i=)—J(Ix))—1)
< A%, where A* has the same numerical value as in the original version of
Theorem 1. (Note that the x-sum is only over x #0.) Then there is a
renormalized Hamiltonian that is of the form (1.4) plus additional single-
site terms — > . V.(#,, m,) that are given explicitly by

Vi, my) 1= log pi[n,J(eZiex A== | m (g.) =m,)  (2.29)

The definitions (1.5) and the error bound (1.6) stay unchanged.

(Here is a quick explanation: Revisiting the proof of Proposition 2.1
we expand only the terms for x # y in the exponential of (2.10) and keep
the terms for x = y. The latter terms are treated as modifications of the
product measure (2.11). Consequently the definition of the resulting
polymer weights (2.17) has to be taken with this changed product measure.
However, since we only use uniform bounds on the terms in the exponential
of (2.17) this doesn’t change the bounds on the polymer weights. Hence
also the bounds on the multi-body potentials stay unchanged.)

APPENDIX: A CONVERGENCE CRITERION FOR CLUSTER-EXPAN-
SIONS FOR LONG-RANGE GRAPHS

Proposition A.1. Suppose that

Y Tles (A1)

is a polymer partition function, where: ‘Polymers’ P are graphs on the
lattice Z“ having at least one edge. Two polymers are called compatible if
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they have disjoint vertex sets. The sum is over pairwise compatible families
of polymers taken from a finite subset 2 of the set of graphs on Z“.
Assume that the (possibly complex) activities p, satisfy the bounds

|ppl <e Zber®  where A:= Y e r<A*x0.110909 (A.2)

Viy#FX

for some translation invariant function 7, =7, , > 0 on the set of edges on
Z°, where the above b-sum is over all edges of the graph P.

Then, the cluster expansion converges, i.e. the Taylor-series of the
logarithm of the partition function has the representation

log Z(Pl,..., P)e n Pp= z D, (A.3)
i=1 %

where the sum is over indecomposable subsets ¥ — £. ‘Indecomposable’
means that there do not exist nonempty %, and %, s.t. the pairs P, P,
are always compatible for P €%, P,€%. The weight &,=
S ren? ¢ [1pes p¥ is the sum over all monomials in the Taylor-expansion
corresponding to multi-indices I with I, > 1 for all P € € and ¢; is the cor-
responding combinatorial factor, depending only on the incompatibility
relation.
Moreover, we have the decay-estimate of the form

A\ 1l
YD <7> <a*|P|, where a*~0.633 (A4
€ :%icp P

for any fixed P. Here the sum is over all clusters incompatible with P, i.e.

containing at least one polymer incompatible with P, and we have put
|€] = > pc o | P| where |P| is the number of bonds of the polymer P.

Proof. The proof is based on the Kotecky—Preiss convergence-cri-
terion [ KP] for abstract polymer models plus a little combinatorics. A very
nice and simple proof of the KP-criterion (with slightly weaker bounds) can
be found in [ BZ2] (see also [S]). It says that the hypothesis

Y |pp] e+ < a(P) (A.5)

P :PicpP

where a(P) and J(P) are weight-functions on the set of polymers, implies
convergence of the cluster expansion. Furthermore it gives the estimate

Y D4 @ <a(P) (A.6)

€ :€icp P

for any P € 2, where 6(6) =3 p. 4 O(P).
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In our present, possibly long-range case, we choose the weight-func-
tions as a(P)=a |P| and J6(P) =9 |P| with a, d >0 (whose values will be
fixed later), and estimate

S Appl e ™IS T S et (AT

P :Picp P x:xeX(P) P:X(P)sx

where X (P) is the vertex set of P. This is a certain overestimation that
could be improved upon for short-range models. If we think of long range
models where the number of bonds that can emanate from a vertex is large,
and the nearest bonds don’t have a large relative weight, the loss is very
small. So we see that the hypothesis of the KP-criterion is implied if the last
P’'-sum is less or equal than a/2. By the form of the bound on the activities
we assume, this is true if

z e ~Zb:bep(ty—a—0) < (A8)

P:X(P)ax

N

We need an upper bound on the sum of the L.h.s. in terms of the bound on
A given our hypothesis. This is provided by the following combinatorial
Lemma.

Lemma A.2. Put b(t) :=3p.yp)o.€ > where ¢, , are trans-
lation-invariant.

Then the bound ¥,., ., e > <! implies that b(t) <h™'(X,., .. e ™)
—1, with the function /: [1, e] — [0, 1], given by A(y) : =122,

Remark. Note that s is a strictly increasing one-to-one mapping
from [1, e] to [0,1] and we have x <A~ '(x)—1=x+... for x small. So,
the lemma shows that, for small enough weights, the sum over all polymers
containing a given site, is essentially given by the sum over all single-bond
polymers.

Proof. We restrict the maximal number of edges in the polymers
occurring in the sum, and put b,(f) :=3Y 5. xpyar1<p<n@ >0 We
proceed by induction over #.

We start with the case n = 1. Then we have b,(1) =3 ,.,., e~ > which
is smaller than the r.h.s. of the inequality we claim, because x <A~ !(x)—1.

Next we assume that the desired equality holds for b,. We want to
show that it holds for b, ;. To relate both quantities we estimate
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bn+1(t)< Z e_tx‘y<1+ z e—ZbePtb>
P:X(P)ay,1<|PI<n

yiy#x

1
2 2 T 2 —2bePlp
21~ ! e el 1 . e =
it 2 P:X(P)sy,1<|P|<n—1

N#X y2#X, )1
X<1+ z e—Zbebe>
P:X(P)3y)1<|P|<n—1
+ -
+l z e z e_tX,yl .. .e_tX.yk
k!
TYLINI#EX Yk:VkFEX

k
x[] <1+
i=1

e—Ebem>+ (A.9)

P:X(P)ay, 1<|PI<n—k
To convince oneself of the validity of this inequality one only needs to

check that any weight of a polymer appearing in the sum of the Lh.s.
appears on the r.h.s. Now, bounding the r.h.s. by an exponential gives

no B B k
bn+1(t)<kzlﬁ< Y e tx,y<1+ T e z>>
= c\y:iy#x P:X(P)ax,1<|P|<x

< exp < Y e (1 +b,,(t))>— 1, (A.10)

y:y#n

by translation-invariance. Using the induction hypothesis on b, we have
from this

bt 5 e (5 e ))rrmi( g o)

Yyiy#EX Viy#EX Yiy#EX
(A.11)
due to the property of the function ~2~'. This concludes the proof of

Lemma (A.2). |

From the lemma we have

e Zebertr—a=d) L p-1 < Z e(fx’y”‘;))—l (A.12)

P:X(P)ax yiy#EX
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So, (A.8) is implied if the r.h.s. is less or equal than 5. This is equivalent to

4 log<l+g>
e%<e‘”h<1+—>=e‘“— (A.13)

2 a
142
+2

But maximizing numerically the r.h.s. of this inequality over a gives the
value A* with the maximizer a* with values given in (A.2) and (A.4).
So, for A< A*, we really get convergence (A.3) from (A.13) by the

abstract KP-criterion. We get decay (A.4) with the best constant by putting

e’ = ’}: This concludes the proof of Proposition A.1. |
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